您现在的位置是:DeepL翻译官网 > 娱乐
怎么求3X3矩阵的行列式
DeepL翻译官网2025-12-26 17:57:16【娱乐】0人已围观
简介矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1 的 2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,
矩阵的矩阵行列式常用于微积分、线性代数和高等几何。列式求一个矩阵的矩阵行列式一开始可能会让人困惑,但只要做过几次后,列式你就会觉得并不是矩阵那么难。
方法1方法1 的列式 2:求行列式
1写出3×3矩阵。我们从3x3矩阵A开始,矩阵试着找出它的列式行列式|A|。下面是矩阵我们将使用的一般矩阵表示法,以及示例矩阵:

2选择单行或单列。这将是矩阵引用行或列。不管你选哪一行或列,列式结果都是矩阵一样的。现在,列式只选择第一行。矩阵稍后,我们将给出一些关于如何选择最简单的计算方法的建议。- 我们选择示例矩阵A的第一行,圈出1 5 3。一般来说,圈出11a12a13。

3划掉第一个元素的行和列。查看圈出的行或列,并选择第一个元素。通过它的行和列画线。剩下四个数字。我们把它看成一个2×2矩阵。
- 在本例中,引用行是1 5 3。第一个元素在第1行和第1列。划掉第一行和第一列。把剩下的元素写成2×2矩阵:
1 5 3
2 4 1
4
6 2

4求出2x2矩阵的行列式。记住,这个矩阵
5将结果乘以你选择的元素。记住,当你决定划去哪一行和哪一列时,是从引用行(或列)中选择了一个元素。将这个元素乘以刚刚计算出的2x2矩阵的行列式。
- 在本例中,我们选择了a11,值为1。将它乘以-34(2x2矩阵的行列式),得到1*-34 =
-34。

6确定答案的正负号。接下来,将答案乘以1或-1来得到所选元素的
代数余子式。你用哪一个取决于元素在3x3矩阵中的位置。记住这个简单的正负号图来找出哪个元素是正,哪个元素是负:
- + - +
- + -
+ - + - 由于我们选择了a11,用a +标记,将结果乘以1。(也就是说,不用管它)。答案还是
-34。
- 或者,你可以用公式(-1)来计算正负号,其中i和j是该元素的行数和列数。

7对引用行或列中的第二个元素重复这个过程。返回到初始的3x3矩阵,包含你之前圈出的行或列。对这个元素重复相同的过程:
划掉这个元素所在的行和列。在本例中,皇冠足球投注平台出租选择元素a12(值为5)。划掉第一行(1 5 3)和第二列
8对于三个元素重复这个操作。你还要找出一个余子式。计算引用行或列中第三项的i。在本例中,下面是计算a13余子式的简要描述:- 划掉第1行和第3列,得到

9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。- 在本例中,行列式为
-34+
120+
-12=
74。
广告
方法2方法2 的 2:简化问题
1选择0最多的引用行或列。记住,你可以选择任意行或列作为引用。不管你选哪一个,结果都是一样的。如果你选择一个带有零的行或列,只需要计算非零元素的代数余子式。原因如下:
- 假设你选择第2行,包含元素a21、a22和23。要解决这个问题,我们要看三个不同的2x2矩阵。我们把它们叫做A21、A22和A23。
- 3x3矩阵的行列式是a21|A21| - a22|A22| + a23|A23|。
- 如果a22和a23都为0,公式就变成a21|A21| - 0*|A22| + 0*|A23| = a21|A21| - 0 + 0 = a21|A21|。现在我们只需计算一个元素的代数余子式。

2利用行加法使矩阵更简单。如果你把一行的值加到另一行,矩阵的行列式不变。列也是如此。你可以重复这样操作,或者在加之前将值乘以一个常数,从而使矩阵有尽可能多的0。这样可以节省很多时间。
- 例如,假设你有一个3×3的矩阵:

3学习三角矩阵的快捷方法。在这些特殊情况下,行列式就是主对角线上的元素的乘积,从左上角的a11到右下角的a33。我们讨论的仍然是3x3矩阵,但是“三角”矩阵有非零值的特殊模式:- 上三角矩阵:所有非零元素都在主对角线上或主对角线之上。下面全部是0。
- 下三角矩阵:所有非零元素都在主对角上或主对角之下。
- 对角矩阵:所有非零元素都在主对角上。(上述矩阵的一个子集)
广告
注意事项

1写出3×3矩阵。我们从3x3矩阵A开始,矩阵试着找出它的列式行列式|A|。下面是矩阵我们将使用的一般矩阵表示法,以及示例矩阵:

2选择单行或单列。这将是矩阵引用行或列。不管你选哪一行或列,列式结果都是矩阵一样的。现在,列式只选择第一行。矩阵稍后,我们将给出一些关于如何选择最简单的计算方法的建议。- 我们选择示例矩阵A的第一行,圈出1 5 3。一般来说,圈出11a12a13。

3划掉第一个元素的行和列。查看圈出的行或列,并选择第一个元素。通过它的行和列画线。剩下四个数字。我们把它看成一个2×2矩阵。
4 1
4
6 2

4求出2x2矩阵的行列式。记住,这个矩阵
5将结果乘以你选择的元素。记住,当你决定划去哪一行和哪一列时,是从引用行(或列)中选择了一个元素。将这个元素乘以刚刚计算出的2x2矩阵的行列式。
-34。

6确定答案的正负号。接下来,将答案乘以1或-1来得到所选元素的
代数余子式。你用哪一个取决于元素在3x3矩阵中的位置。记住这个简单的正负号图来找出哪个元素是正,哪个元素是负:
- + -
+ - +
-34。

7对引用行或列中的第二个元素重复这个过程。返回到初始的3x3矩阵,包含你之前圈出的行或列。对这个元素重复相同的过程:
划掉这个元素所在的行和列。在本例中,皇冠足球投注平台出租选择元素a12(值为5)。划掉第一行(1 5 3)和第二列
8对于三个元素重复这个操作。你还要找出一个余子式。计算引用行或列中第三项的i。在本例中,下面是计算a13余子式的简要描述:- 划掉第1行和第3列,得到

9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。- 在本例中,行列式为
-34+
120+
-12=
74。
广告

9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。- 在本例中,行列式为
-34+
120+
-12=
74。
广告
-34+
120+
-12=
74。

1选择0最多的引用行或列。记住,你可以选择任意行或列作为引用。不管你选哪一个,结果都是一样的。如果你选择一个带有零的行或列,只需要计算非零元素的代数余子式。原因如下:
- 假设你选择第2行,包含元素a21、a22和23。要解决这个问题,我们要看三个不同的2x2矩阵。我们把它们叫做A21、A22和A23。
- 3x3矩阵的行列式是a21|A21| - a22|A22| + a23|A23|。
- 如果a22和a23都为0,公式就变成a21|A21| - 0*|A22| + 0*|A23| = a21|A21| - 0 + 0 = a21|A21|。现在我们只需计算一个元素的代数余子式。

2利用行加法使矩阵更简单。如果你把一行的值加到另一行,矩阵的行列式不变。列也是如此。你可以重复这样操作,或者在加之前将值乘以一个常数,从而使矩阵有尽可能多的0。这样可以节省很多时间。
- 例如,假设你有一个3×3的矩阵:

3学习三角矩阵的快捷方法。在这些特殊情况下,行列式就是主对角线上的元素的乘积,从左上角的a11到右下角的a33。我们讨论的仍然是3x3矩阵,但是“三角”矩阵有非零值的特殊模式:
- 上三角矩阵:所有非零元素都在主对角线上或主对角线之上。下面全部是0。
- 下三角矩阵:所有非零元素都在主对角上或主对角之下。
- 对角矩阵:所有非零元素都在主对角上。(上述矩阵的一个子集) 广告
注意事项
很赞哦!(242)
上一篇: “这是真正值得我们年轻人追的星”
相关文章
- 精选四年级优秀作文300字集合10篇
- 【熊猫反病毒软件】熊猫反病毒软件 2010版
- 【eset nod32防病毒软件下载】ESET NOD32防病毒软件 12.2
- 【Hazel Mac版】Hazel For Mac 4.0.8
- 三角洲行动今日密码12.25 12月25日密码门摩斯密码分享
- 【熊猫卫士下载 官方版】熊猫卫士 2010中文版
- 【江民KV2008下载版(30天免费版)】江民KV2008下载版(30天免费版)
- 【中兴新支点操作系统下载】中兴新支点(NewStart)操作系统 3.2.1
- 速看!天津美国留学中介最新排名出炉,这几家机构成黑马!
- 【卡巴斯基2010下载】卡巴斯基2010全功能安全软件 9.0
热门文章
站长推荐

县政协主席周明河主持召开第八届河南民权制冷装备博览会邀商组工作推进会

【麦咖啡杀毒软件下载 中文版】McAfee杀毒套装 12.2.0

【irusTotal Uploader Mac版】irusTotal Uploader For Mac 1.3

【Windows Server 2003 安全更新 (KB913538)】Windows Server 2003 安全更新 (KB913538)

中建八局承建的喀什地区巴楚县博物馆新馆正式开馆

【Sophos Anti

【诺顿网络安全特警2009】诺顿网络安全特警2009 简体中文版

【诺顿网络安全特警】Norton Internet Security 17.0